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Identifying the mechanisms driving adaptive radiations is key 
to explaining the diversity of life. The extreme reliance of spiders 
upon silk for survival provides an exceptional system in which 
to link patterns of diversification to adaptive changes in silk use. 
Most of the world’s 41,000 species of spiders belong to two apical 
lineages of spiders that exhibit quite different silk ecologies, 
distinct from their ancestors. Orb spiders spin highly stereotyped 
webs that are suspended in air and utilize a chemical glue to 
make them adhesive. RTA clade spiders mostly abandoned silk 
capture webs altogether. We recently proposed that these two 
clades present very different evolutionary routes of achieving the 
same key innovation—escape from the constraints imposed by 
spinning webs that contain a relatively costly type of physically 
adhesive cribellate silk. Here, we test the prediction that orb 
and RTA clade spiders are not only more diverse, but also have 
higher fecundity than other spiders. We show that RTA clade 
spiders average 23% higher fecundity and orb spiders average 
123% higher fecundity than their ancestors. This supports a 
functional link between the adaptive escape from cribellate silk 
and increased resource allocation to reproduction in spiders.

Adaptative radiations explain much of the modern earth’s 
diversity of life.1,2 Yet, identifying the mechanisms driving the 
success of those radiations is difficult.3-5 Spiders provide an excep-
tional system in which to test links between putative adaptations 
and patterns of speciation because of their extreme reliance on 
silk. Spider webs epitomize the adaptive use of high performance 
biomaterials in animal architecture.6,7 All of the world’s 41,000+ 
species of spiders spin silk fibers with strength to weight ratios 
up to five times greater than steel. Thus, it is not surprising that 
the spectacular evolutionary and ecological success of spiders is 

 generally attributed to key innovations in the production and use 
of different silks.8-12 The aerial orb webs of the Orbiculariae are 
one such example, which utilize a composite architecture including 
a framework of stiff, exceedingly strong major ampullate silk radii 
to suspend a highly elastic capture spiral coated with droplets of 
liquid glue (Fig. 1). The capacity of orb webs to reliably absorb 
the high energy impact of flying prey helped to make orbicularian 
spiders dominant predators of aerial insects in many ecosystems.

However, such silk production is not without cost. Silk threads 
are composed primarily of proteins and a single orb web can be as 
much as 0.1–1% of a spider’s wet body mass.13 Thus, replacing lost 
webs from body reserves is presumably expensive. Furthermore, 
some silks cost more energy to spin than others. In particular, the 
cribellate silk used as adhesive fibers in relatively primitive spider 
webs functions through Van der Waals interactions and physical 
entanglement.14,15 This contrasts with the chemically adhesive 
glycoproteins found in the aggregate glue droplets of modern 
orb spiders.16 In a time and energy-consuming process, cribellate 
spiders physically comb out puffs of silk containing the hundreds 
to thousands of nanoscale fibrils required for adhesive function (Fig. 
1A). Consequently, spiders that utilize cribellate silk tend to show 
high fidelity to individual webs. In contrast, most derived spiders 
have either abandoned capture webs entirely or evolved chemi-
cally adhesive, aggregate glue, which allows webs to be constructed 
quickly and for silk to be recycled when webs are taken down and 
consumed.17,18 We recently used a total evidence based phylogeny 
of spiders to demonstrate that these two behavioral patterns of silk 
use are derived strategies that mark the two most successful clades of 
spiders—wandering hunter/ambushers in the RTA clade (~22,000 
species) and the orb-weaving Araneoidea (~12,000 species). We 
suggested that “escape” from the constraints imposed by use of 
expensive cribellate silk was causally related to the latter adaptive 
radiations of RTA clade and Araneoidea, such that. the evolutionary 
shifts away from the use of capture silk altogether, and to chemically 
adhesive glue, played an important role in shaping the diversifi-
cation of modern spiders. In turn, the hypothesis predicts that 
adaptive changes in silk use should be accompanied by increased 
fecundity. Here, we test this prediction by examining the correla-
tion between changes in web use and fecundity across spiders.
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Comparing Spider Fecundity

Reproductive output of spiders, measured 
as clutch size, generally increases with body 
size of spiders, both within and among 
species.19-21 Here, we present data on repro-
ductive output from 343 species across 60 
of the 105 extant families of spiders, repre-
senting all higher lineages (see appendix). 
Comparative data is best analyzed in a phylo-
genetic framework, such as independent 
contrasts, to control for the inflation of 
degrees of freedom that can occur when 
comparing close relatives.22 However, this 
is not feasible for the current data because 
most spider phylogeny is largely unknown. 
Prior studies also show that the relationship 
between spider body size and fecundity is 
relatively similar regardless of the use of “raw” 
or phylogenetically independent data.19,20 
Therefore, we concentrate on the phenotypic 
data themselves, with an understanding that 
Type I error may be somewhat inflated by 
this approach.

Spider length was highly correlated with 
spider fecundity in a regression analysis (R2 
= 0.49, p < 0.00001). We therefore used the 
standardized residuals of fecundity vs. body 
length to compare the reproductive output 
of orbicularian and RTA clade spiders versus 
all other taxa (“outgroup”). The lineage of 
spiders had a highly significant effect on 
residual fecundity (ANOVA F2,340 = 40.4, p 
< 0.00001). Both RTA clade and orbicularian 
spiders had higher fecundity than all other 
spiders (23 and 123% respectively). Furthermore, orbicularians 
were significantly more fecund than the RTA clade (Fig. 3).

While other factors also contribute to reproductive output, we 
argue that clutch is a good overall estimator. Energy content of 
eggs is similar across a broad survey of spider taxa.23 Many spiders 
can produce more than one clutch of eggs over their lifetime, but 
past studies suggest that individual clutch size strongly correlates 
positively with number of clutches.21 Finally, there is currently no 
consensus on the potential for a egg size-number tradeoff within 
clutches, with near simultaneous studies proposing evidence for20 
and against the hypothesis.19 Thus, single clutch remains at least a 
reasonably accurate estimator of overall spider reproductive effort.

Fecundity and Spider Evolution

The derived predatory behaviors considered here, develop-
ment of aerial webs and loss of capture webs all together, are quite 
different. But, both allow “escape” from dependence on expen-
sive cribellate silk.12 Moreover, we show here that this escape 
is significantly correlated with increased reproductive output in 
both clades.

Spider web adaptations increase fecundity
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Figure 1. Spiders use silk in three broadly different strategies for prey capture. (A) Many spiders 
spin a variety of sheet webs with relatively amorphous architectures. These webs lack stereotyped 
major ampullate supporting threads and utilize cribellate adhesive threads (shown here in darkfield 
at the bottom of the panel). Cribellate silk consists of one or more pairs of core fibers surrounded 
by a sheath of nanoscale fibrils physically combed into puffs by the spider. (B) Nearly all orb weav-
ing spiders and their relatives use stereotyped web spinning behaviors and defined frameworks of 
dragline silk to suspend webs relatively far from substrate. Thus, the form of the web is taxonomi-
cally rather than substrate specific. Most also utilize aggregate capture silk (see text). (C) RTA clade 
spiders tend to stalk or ambush prey, having abandoned the use of capture silks altogether.

Figure 2. Log-log plot of clutch size versus body size in spiders.
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webs represents a major evolutionary innovation in spiders that 
facilitates increased reproductive output; it may also have imposed 
a new set of ecological constraints that further shaped the evolu-
tion of silk use in these spiders.
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The clutch sizes of orb spiders are much higher than either 
distant outgroup taxa or their sister lineage, RTA clade (Fig. 3). 
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therefore have enabled access to a new source of abundant prey, 
flying insects, which neither hunter/ambushers nor primitive 
cribellate spiders can easily catch. Indeed, growing ecological data 
support the hypothesis that evolution has placed a premium on a 
fast growth life history for orb spiders. Positive, fecundity-based 
selection on female body size in orb spiders24 necessitates high 
rates of prey capture.25 Much of this biomass consumed by orbwe-
avers is subsequently converted into egg production.26,27 While 
spiders are famous for their low metabolic rates,28 orb spiders 
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Figure 3. Relationship between fecundity and silk use by spiders. Residuals for egg production were calculated from the regression of individual clutch 
size on spider body length in Figure 2. The graphs show histograms of residual egg production for species within each of two highly successful, api-
cal clades of spiders compared to all other taxa of spiders. The phylogeny is summarized from Blackledge et al. 2009 and illustrates the relationship 
between species diversity (total size of pie charts) and silk use ecologies (colors) among spiders.
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