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Abstract

Aim: We explore the evolutionary history of the ogre‐faced spiders (Deinopis) from

their Early Cretaceous origins to present day. Specifically, we investigate how vicari-

ance and dispersal have shaped distribution patterns of this lineage. Within the Car-

ibbean, we test the role of GAARlandia, a hypothesized land bridge that connected

South America to the Greater Antilles during the Eocene–Oligocene transition (~35–
33 Ma), in the biogeography of Deinopis.

Taxon: Araneae: Deinopidae: Deinopis.

Location: Caribbean islands, with additional global exemplars.

Methods: Combining standard Sanger sequence data with an Anchored Hybrid

Enrichment (AHE) phylogenomic dataset, we use Bayesian inference to estimate the

phylogenetic relationships of Deinopis. “BioGeoBEARS” is used to test the GAARlan-

dia hypothesis, and to pinpoint major dispersal events in the biogeographic history

of Deinopis.

Results: The phylogeny supports the nesting of a Caribbean clade within a conti-

nental grade. Model comparisons indicate GAARlandia as the best fitting model, and

the biogeographic analyses reflect the geologic history within the Caribbean. Ancient

and recent overwater dispersal events are also indicated within this lineage. There is

also an ancient 113 Ma split into Old and New World clades.

Main Conclusions: The Deinopis phylogeny corresponds well with geography. This is

reflected in the support for the GAARlandia land bridge hypothesis and the phyloge-

netic relationships within and among Caribbean islands mirroring nuances of Carib-

bean geologic history. Overwater dispersal also plays an important role in the

biogeographic history of this lineage as implicated in the colonization of the volcanic

and sedimentary Lesser Antilles and in a “reverse” colonization of North America.

The spider family Deinopidae is an ancient lineage with origins dating back to Gond-

wana. While overwater dispersal has clearly played a role in the biogeography of

the genus, the Deinopis phylogeny bears a strong signature of ancient geological

events.
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1 | INTRODUCTION

Researchers in the field of biogeography continue to explore the rela-

tive importance of long‐distance dispersal (LDD) and vicariance in shap-

ing biodiversity (Cook & Crisp, 2005; Cowie & Holland, 2006; Yoder &

Nowak, 2006). Before the mid 20th century revelation of plate tecton-

ics, LDD (Carlquist, 1981; Darwin, 1859) and often unsubstantiated land

bridge hypotheses were the predominant explanations for disjunct bio-

geographic patterns. Plate tectonics stimulated biogeographers to pro-

pose Earth's geologic history as the primary explanation for distribution

patterns, rather than stochastic dispersal events (Nelson & Platnick,

1981; Raven & Axelrod, 1974). Today, it is widely accepted that both

LDD (Cowie & Holland, 2006; De Queiroz, 2005; Gillespie et al., 2012)

and vicariance events (De Boer & Duffels, 1996; Joseph, Moritz, &

Hugall, 1995; Trewick, 2000) have fundamentally shaped the evolution-

ary history of many lineages (Costa, 2010; Gillespie & Roderick, 2002;

Gillespie et al., 2012; Weaver, Cruz, Johnson, Dupin, & Weaver, 2016).

Islands, especially geologically complex archipelagos, provide excellent

canvases for studying these dispersal patterns (Gillespie & Roderick,

2002). The balance between LDD and vicariance depends on both the

unique history of each island and the biology of a particular lineage

(Agnarsson, Cheng, & Kuntner, 2014; Alonso, Crawford, & Bermingham,

2012; Binford et al., 2008; Crews & Gillespie, 2010; Heinicke, Duell-

man, & Hedges, 2007). Some islands formed “de novo” through volcanic

activities (Darwinian islands), where dispersal must predominate. Other

islands are hypothesized to have continental origins, and/or have been

connected to the mainland via temporary land bridges (Pindell, 1994;

Pitman, 1993). These ancient connections should have provided corri-

dors for biota to disperse and colonize until vicariance events subse-

quently generated disjunct species distributions.

The Caribbean archipelago is composed of islands with diverse

geologic histories (Mann, Schubert, & Burke, 1990; Pindell, 1994; Pin-

dell & Barrett, 1990; Pitman, 1993) and thus an excellent venue for

addressing the interplay between dispersal and vicariance in shaping

the biogeography of organisms. The Greater Antilles islands, including

Cuba, Hispaniola, and Puerto Rico, share geologic histories dating back

to the Cretaceous–Paleogene Greater Antilles arc system (Mann et al.,

1990; Pindell & Barrett, 1990). A magmatic belt along the northern

boundary of the Caribbean plate together with the Aves Ridge formed

the Great Caribbean arc (Pindell & Barrett, 1990; Pindell, Kennan,

Stanek, Maresch, & Draper, 2006). Relative to the Americas, the arc

shifted eastward with the movement of the Caribbean plate, until

reaching its present day geography (Iturralde‐Vinent, 2006;

Iturralde‐Vinent & MacPhee, 1999; Mann et al., 1990; Pindell & Bar-

rett, 1990). The volcanic arc is hypothesized to have formed a late‐
Cretaceous (85–65 Ma) subaerial connection to the Greater Antilles

(Iturralde‐Vinent, 2006; Nelson & Platnick, 1981; Rosen, 1985); how-

ever, the most ancient connections between the continents and the

Greater Antilles are not likely biologically relevant. For instance, the

Cretaceous–Tertiary boundary meteorite impact on Yucatan, Mexico

65 Ma (Pope, Ocampo, & Duller, 1991) had catastrophic effects,

including major tsunamis (Bourgeois, Hansen, Wiberg, & Kauffman,

1988; Hildebrand & Boynton, 1990; Maurasse & Sen, 1991; Smit et

al., 1992) that are predicted to have wiped out large fractions of the

Caribbean terrestrial biota (Crother & Guyer, 1996; Hedges, Hass, &

Maxson, 1992; Iturralde‐Vinent, 2006; Iturralde‐Vinent & MacPhee,

1999). Furthermore, the volcanic mountain chain did not continuously

form emergent islands, but periodically formed suboceanic banks (Itur-

ralde‐Vinent, 2006; Pindell, 1994; Pitman, 1993). Geologic evidence

suggests continuous land availability in the Caribbean dating back

approximately 40 Ma (Iturralde‐Vinent, 1982, 2006; Iturralde‐Vinent
& MacPhee, 1999), ruling out the continental origin of Caribbean biota

during the original fragmentation of the continental crusts.

The age of current lineages in the Caribbean is still largely unre-

solved (Graham, 2003; Hedges, 1996, 2006; Iturralde‐Vinent, 2006;
Iturralde‐Vinent & MacPhee, 1999; MacPhee & Iturralde‐Vinent, 1994,
2005). The colonization history, especially of Caribbean biota that are

not expected to readily cross oceanic barriers, is of great interest (Hei-

nicke et al., 2007; Ricklefs & Bermingham, 2008). Rare overwater dis-

persal, for example with vegetation rafts (King, 1962) or during

hurricanes (Censky, Hodge, & Dudley 1998), may explain the arrival of

some taxa that otherwise do not typically disperse across water. These

would be expected to have arrived at different geologic times. Alterna-

tively, the hypothesized GAARlandia (Greater Antilles and Aves Ridge)

land bridge predicts the more or less simultaneous colonization of multi-

ple lineages at 35–33 Ma. During the Eocene–Oligocene transition, the

Greater Antilles uplift, coupled with low sea levels, exposed portions of

Aves Ridge, potentially forming a relatively continuous connection

between northern South America and the Greater Antilles (Iturralde‐
Vinent, 2006; Iturralde‐Vinent & MacPhee, 1999). Reaching peak
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exposure 35–33 Ma, the causeway would have served as a temporary

opportunity for colonization of the Greater Antilles, until being subse-

quently flooded with rising sea levels (30–24 Ma) (Iturralde‐Vinent,
2006). Several prior studies offer support for the GAARlandia coloniza-

tion route, primarily in the form of dated phylogenies secondarily sup-

porting the hypothesis (Alonso et al., 2012; Říčan, Piálek, Zardoya,

Doadrio, & Zrzavy, 2013). However, relatively few studies have explic-

itly tested the role of GAARlandia (Nieto‐Blázquez, Antonelli, & Roncal,

2017; Weaver et al., 2016), and thus its existence remains under active

debate (Ali, 2012; Graham, 2003; Hedges, 2006; MacPhee & Iturralde‐
Vinent, 2005). Furthermore, Neogene–Pliocene overwater dispersal

better explains the timing and pattern of Caribbean colonization

for many organisms that are not dispersal‐limited (Agnarsson et al.,

2016; Dávalos, 2004; Hedges, 2001; McHugh, Yablonsky, Binford, &

Agnarsson, 2014).

Most biogeographic research in the Caribbean has focused primar-

ily on vertebrates (Dávalos, 2007; Glor, Losos, & Larson, 2005; Hedges

et al., 1992; Hrbek, Seckinger, & Meyer, 2007; Murphy & Collier,

1996; Říčan et al., 2013; Sato et al., 2016) and plants (Salzman & Judd,

1995; Santiago‐Valentin & Olmstead, 2003; Skean, 1993; Zona, 1990).

There have been a few recent studies on invertebrates (Hall, Robbins,

& Harvey, 2004; Matos‐Maraví et al., 2014; Morrone, 2006; Sourakov

& Zakharov, 2011) including spiders (Crews & Gillespie, 2010; Dziki,

Binford, Coddington, & Agnarsson, 2015; McHugh et al., 2014) and

other arachnids (Cosgrove, Agnarsson, Harvey, & Binford, 2016;

Esposito et al., 2015). These studies have found mixed support for

vicariance (Chakrabarty, 2006; Dziki et al., 2015; Matos‐Maraví et al.,

2014; Říčan et al., 2013) and dispersal (Crews & Gillespie, 2010; Glor

et al., 2005; McHugh et al., 2014; Sato et al., 2016) depending on the

biology and characteristics of each lineage. Old, globally distributed

species that do not readily cross barriers are especially attractive

because, while LDD may still occur, it is likely not so frequent as to

obfuscate reconstruction of biogeographic history. They also present

a more powerful test than, for instance, younger, more narrowly dis-

tributed taxa or those in which LDD predominates.

Deinopis are large, web‐building spiders globally distributed in tropi-

cal and warm temperate areas (Asia, Africa, Madagascar, Australia,

North and South America, and the Caribbean). Deinopis are commonly

known as “ogre‐faced spiders” due to their enlarged posterior median

eye size, or as “net‐casting spiders” because they actively cast their spe-

cially modified orb webs over prey (Coddington, 1986; Coddington,

Kuntner, & Opell, 2012; Coddington & Sobrevila, 1987). The enlarged

eyes enable Deinopis to hunt at night in low‐light conditions (Stafstrom
& Hebets, 2016). During the day, these spiders can be found in under-

storey habitats and typically hang from dried vegetation mimicking dead

palm leaves, sticks and twigs, or pine needles (Getty & Coyle, 1996).

Deinopis is an early diverging spider lineage and geographically wide-

spread, occurring on all of the Gondwanan landmasses (World Spider

Catalog) making them an excellent organism for studying ancient bio-

geographic patterns. The Mesozoic phylogenetic placement of Deino-

poidea (Bond et al., 2014; Garrison et al., 2016) and a deinopid fossil

known from Lebanese Amber 135–100 Ma (Penney, 2003) suggest that

deinopids are an ancient Cretaceous lineage and may have Gondwanan

origins (Ruban, Al‐husseini, & Iwasaki, 2007). Given the cryptic, seden-

tary behaviour of these spiders and because they are absent from

remote oceanic islands (sensu Gillespie & Clague, 2009), we predict that

the postulated GAARlandia land bridge was integral to the dispersal of

Deinopis into the Greater Antilles. Here, we aim to test the biogeo-

graphic history of Deinopis and the potential role of GAARlandia in the

colonization of the Caribbean.

2 | MATERIALS AND METHODS

2.1 | Taxon sample

One hundred and ninety‐five Deinopis specimens were collected using

standard aerial searching and vegetation beating in Cuba, Hispaniola,

Jamaica, Puerto Rico, the Lesser Antilles, North America, Central

America (Costa Rica), northern South America (French Guyana, Colom-

bia, Ecuador), South Africa, Madagascar, China, Taiwan, and Australia

(Figure 1). There are 21 named species in the New World, including

four species within the Caribbean. As discussed by Coddington et al.

(2012), deinopids are generally rarely collected: only about 300 speci-

mens of 57 species exist in the world's museums (unpubl. data). Our

sampling thus represents an extensive effort that vastly increased the

number of deinopids in collections. Here, we use Deinopis sp. as our

operational taxonomic units (OTUs) to refer to the undescribed taxa,

or clades with large amounts of polytomies. Specimens were pre-

served in the field in 95% EtOH. We include 12 outgroup species

including near relatives selected based on the most recent phyloge-

netic analyses of spider families (Bond et al., 2014; Dimitrov et al.,

2016; Garrison et al., 2016). See Appendix S1 in Supporting Informa-

tion for taxon sample information and GPS localities.

2.2 | Molecular methods

We applied phylogenetic analyses using a combination of shallow

gene coverage with dense specimen sampling (Sanger), and a

reduced specimen sampling scheme with deep sequence coverage

(Anchored Hybrid Enrichment).

2.3 | Targeted gene methods—full specimen set

DNA was isolated from 190 specimens, with the QIAGEN DNeasy Tis-

sue Kit (Qiagen, Inc., Valencia, CA). We sequenced fragments of one

mitochondrial locus (COI: Cytochrome c oxidase subunit 1) and three

nuclear loci (18S, 28S, H3), typically effective phylogenetic markers at

shallow taxonomic levels for spiders (Agnarsson, Maddison, & Avilés,

2007; Kuntner & Agnarsson, 2011). We amplified COI with the

LCO1490 (Folmer, Black, Hoeh, Lutz, & Vrijenhoek, 1994) and C1‐N‐
2776 (Hedin & Maddison, 2001) or with primer pairs of LCO1490 and

HCOI2198 (Folmer et al., 1994), Jerry (Simon et al., 1994), and C1‐N‐
2776. See Table S1.2 in Appendix S1 for PCR conditions for all four

markers. Sanger sequencing of samples from the Caribbean, North

America, China, Taiwan, Colombia, and South Africa was done at the

University of Arizona Genetics Core.
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2.4 | Anchored Hybrid Enrichment—dense genetic
sampling with reduced specimen set

The use of Anchored Hybrid Enrichment (AHE) in spiders (Hamilton,

Lemmon, Lemmon, & Bond, 2016) is a new phylogenomic approach

designed to recover hundreds of unique orthologous loci (i.e., single

copy, phylogenetically informative markers) from across the genome.

Hamilton et al. (2016) developed the Spider Probe Kit v1 and suc-

cessfully exhibited the effectiveness of this targeted sequencing

approach at resolving both shallow and deep‐scale evolutionary rela-

tionships within spiders. One drawback of the original paper (Hamil-

ton et al., 2016) was that their taxonomic sampling was biased

towards mygalomorph spider taxa. This is the second time AHE has

been used in an araneomorph group (Maddison et al., 2017), and the

first genus and species‐level investigation into relationships within

the araneomorphs.

In an attempt to resolve those deeper nodes that were generally

weakly supported in the four‐locus analysis (<0.95 bootstrap sup-

port), we sampled 15 individuals (one per key species). Additionally,

we incorporated two individuals from Mexico that were not included

in the Sanger dataset. High‐quality genomic DNA (≥1 μg) for all

specimens was extracted using a Qiagen DNeasy Blood & Tissue kit,

drawn from leg tissue that had been preserved using ≥95% EtOH

and stored in a −80°C freezer within the Agnarsson lab cryo‐collec-
tion. DNA concentration was evaluated through agarose gel elec-

trophoresis and spectrophotometry using a NanoDrop ND‐1000.

2.5 | Sequence alignment

Sanger sequences were interpreted from chromatograms using PHRED

and PHRAP (Green, 2009; Green & Ewing, 2002) within the CHRO-

MASEQ module (Maddison & Maddison, 2011a) in the evolutionary

Cuba (20)

Hispaniola (34)

Puerto Rico (29)

Caribbean

Jamaica (19)

Guadeloupe (1)
Dominica (4)
St. Vincent (2)

F IGURE 1 Map of collection localities, both globally and locally in the Caribbean. The number of individual specimens that were included in
our dataset is shown in parentheses next to each locality. Inset photograph of Deinopis in field in Cuba by M. Kuntner [Colour figure can be
viewed at wileyonlinelibrary.com]
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analysis program MESQUITE 2.75 (Maddison & Maddison, 2011b), with

default parameters. The sequences were then proofread by examin-

ing chromatograms by eye. Alignments were done in MAFFT (Katoh &

Standley, 2013) through the online portal EMBL‐EBI, using default

settings but increasing the tree rebuilding and maxiterate settings to

100. Gaps were treated as missing characters. Final alignment

lengths were: 1,288—CO1, 721—28S, 812—18S, 374—H3, for a

combined final alignment of 3,195 base pairs (bp).

Anchored Hybrid Enrichment data were generated (library prepa-

ration, enrichment, and sequencing) at the Center for Anchored Phy-

logenomics at Florida State University (www.anchoredphylogeny.c

om) following the general methods outlined in Lemmon, Emme, &

Lemmon (2012) and Hamilton et al. (2016). Sequencing was per-

formed in the Translational Science Laboratory in the College of

Medicine at Florida State University. Subsequent bioinformatics (data

processing, sequence assembly, quality control, orthology search,

alignment) follows the methodology outlined in Hamilton et al.

(2016). Following the targeting of the 585 loci in the Spider Probe

Kit (Hamilton et al., 2016), 277 loci were recovered from the 17 Dei-

nopis specimens (see Appendix S1) investigated herein. Alignments

were performed in MAFFT; gaps were treated as missing characters.

2.6 | Phylogenetics

Individual gene trees were estimated using MRBAYES 3.2.2 (Huelsen-

beck, Ronquist, Nielsen, & Bollback, 2001; Ronquist & Huelsenbeck,

2003). PARTITIONFINDER 1.1.1 (Lanfear, Calcott, Ho, & Guindon, 2012)

was implemented to select the appropriate substitution model using

the AIC criterion (Posada & Buckley, 2004). The best model for COI

was GTR+G+I, for 28S GTR+G, for H3 K80+I+G, and for 18S

SYM+I+G. We ran Bayesian inference of all four loci remotely on

the CIPRES portal (Miller, Pfeiffer, & Schwartz, 2010) utilizing

MRBAYES 3.2.2 with two sets of MCMC and four chains for 30 mil-

lion generations, sampling the Markov chain every 1,000 genera-

tions. Results were examined in TRACER 1.6 (Rambaut & Drummond,

2007) to verify proper mixing of chains and that stationarity had

been reached, as well as determine adequate burn‐in. For the three

nuclear loci, burn‐in was set at three million generations, and five

million generations for COI.

In addition to the “full” dataset (above), where many OTUs were

only represented by COI sequences, we also ran Bayesian inference

on a pruned version of the concatenated alignment—a dataset that

included all individuals with at least 65% of the data (3,198 bp), and

another dataset that included two “chimeric” taxa representing each

COI genetic cluster (i.e., mostly eliminated missing character data and

allowed for testing the sensitivity of the results to missing data).

These analyses were run under the same rates and parameters.

Again, using MRBAYES 3.2.2 on the CIPRES portal for our Baye-

sian inference, we analysed the 277 loci supermatrix (84,260 bp)

recovered from the AHE bioinformatics pipeline (see Hamilton et al.,

2016) under default GTR+I+G unpartitioned priors. A coalescence‐
based species tree approach, ASTRAL (Accurate Species Tree

ALgorithm), was used to account for incomplete lineage sorting on

our large AHE dataset (Mirarab et al., 2014). RAXML (Stamatakis,

2006, 2014) was used to generate maximum likelihood (ML) gene

trees for the ASTRAL analysis, which were replicated with 100 boot-

strap replicates (Stamatakis, 2014). The resulting tree was used as a

constraint for the four‐locus concatenated Bayesian analysis.

2.7 | Divergence time estimations

We used a Bayesian, multi‐gene approach with BEAST 1.8.0 (Drum-

mond, Suchard, Xie, & Rambaut, 2012) under a relaxed clock model

(Battistuzzi, Billing‐Ross, Paliwal, & Kumar, 2011) to estimate diver-

gence times in Deinopis. For the Sanger sequencing data, dating and

maximum likelihood estimations of ancestral areas were performed

with the “chimeric” matrix including all four loci (i.e., low amounts of

missing data)—resulting in the smallest taxon sample but most com-

plete gene alignment. In addition, BEAST analyses were run separately

on the most taxon‐rich dataset (COI) as well as on individual nuclear

datasets (28S, H3, 18S) and assessed for continuity. A final dating

analysis was run on our AHE data, under default GTR+I+G unparti-

tioned priors, for 30 million generations with a Yule process tree prior.

For all dating analyses, the monophyly of Deinopidae was con-

strained, based on the results of the Bayesian and ML analyses. We

utilized the CIPRES online portal to run the BEAST analyses after con-

figuring them locally using BEAUTI (Altekar, Dwarkadas, Huelsenbeck,

& Ronquist, 2004; Miller et al., 2010). A fossil calibration, based on

the Lebanese amber Paleomicromenneus, estimated to be 130–
100 Myr (Penney, 2003), was used as a stem with a minimum age of

Deinopidae and a uniform distribution offset by 100 with the maxi-

mum age that of orbicularian spiders (190 Ma). For the Sanger

sequencing dataset, following the results from the phylogenomic

study of spiders (Bond et al., 2014), we calibrated the age of orbicu-

larians, in the broadest sense, containing deinopids, using a normal

distribution with mean of 190 Ma and 20 standard deviations and

the age of the root as 200 ± 20 Ma SD. We also used the COI mean

and SD substitution rates estimated to be similar across spider lin-

eages, which can be used to estimate divergence times (Bidegaray‐
Batista & Arnedo, 2011; Kuntner, Arnedo, Trontelj, Lokovsek, &

Agnarsson, 2013; McHugh et al., 2014). We set the COI mitochon-

drial substitution rate parameter (ucld.mean) as a normal prior with

mean = 0.0112 and SD = 0.001. We tested the sensitivity of the

results to a priori assumptions by conducting and comparing analyses

with and without COI rate information and with and without con-

straining Deinopidae monophyly. The Sanger data analyses were run

for 30 million generations with a calibrated Yule birth–death tree

prior because it can simulate extinction rates over time and is more

appropriate if more than one individual represents terminal taxa

(Drummond et al., 2012). ESS values for all sets of data were again

examined in TRACER 1.6 (Rambaut & Drummond, 2007) to determine

burn‐in and to check for stationarity. The tree was then assembled

in TREEANNOTATOR using a burn‐in of three million (five million for our

AHE dataset).
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2.8 | Biogeography

We used ‘BioGeoBEARS’ in R (Matzke, 2013) to estimate global and

Caribbean ancestral ranges. Maximum range was constrained to two

areas. To test global biogeography, the “chimeric” dated phylogeny

was used, as topology and divergence times were consistent with

AHE tree, yet it had the most complete global taxon sampling. The

“prune_specimens_to_species function” was used in R to obtain

OTUs. We defined eight geographic regions based on Morrone

(2006) as North America (NA), South America (SA), Africa (AF),

Southeast Asia east to Wallace's line (AS), Australia (AU), Greater

Antilles (GA) and Lesser Antilles (LA). Time slices included the Early

Cretaceous split of eastern South America and western Africa (119–
105 Ma) (Ali & Aitchison, 2008; Hawkesworth, Kelley, Turner, Le

Roex, & Storey, 1999; McLoughlin, 2001; Vidal, Azcolinsky, Cruaud,

& Hedges, 2008; Vidal et al., 2010).

To test the GAARlandia model, we applied probabilities to

time slices based on historical geology (Iturralde‐Vinent, 2006;

Iturralde‐Vinent & MacPhee, 1999) replicating similar parameters

outlined by Weaver et al. (2016). The AHE dated phylogeny was

used because node support was 1 for all nodes and error bars

were smaller compared to the “chimeric” dated phylogeny. The

AHE phylogeny was pruned to include South America and the

Greater Antilles; geographic ranges included South America (SA),

Hispaniola (HI), Cuba (CU), Jamaica (JA), and Puerto Rico (PR). The

GAARlandia model consisted of probabilities of Greater Antilles

land connection to South America, as well as inter‐island connec-

tions from 35–30 Ma. The No GAARlandia model did not include

connection from South America to the Greater Antilles, but did

share the opening of the Mona Passage (23 Ma) Windward Pas-

sage (15 Ma) (Iturralde‐Vinent, 2006) (see Table S3.1 in

Appendix S3). We also tested the GAARlandia hypothesis with the

“chimeric” and COI phylogenies under the same model parameters.

We applied models Dispersal‐Extinction‐Cladogenesis DEC and

DEC+J, which accounts for founder event speciation. The DEC+J

has been criticized as a poor model for founder event speciation

by parameterizing the mode but not the rate of speciation and

thus creating a tendency towards data explained entirely by clado-

genetic events (Ree & Sanmartín, 2018). Here we compare likeli-

hood and AIC values of both the DEC and DEC+J of GAARlandia

models to the DEC and DEC+J of No GAARlandia models. The

likelihood scores for this GAARlandia analysis were compared to

test for significance (a natural log of 2 was considered significant)

(Ree & Smith, 2008). Akaike information criterion (AIC) and

relative likelihood were used to assess the model probabilities

given the data (Table 1).

3 | RESULTS

3.1 | Overview

Fundamental relationships of the entire group were nearly identi-

cal in the taxon‐rich Sanger and character‐rich AHE datasets; the

latter with posterior probability support of 1 for every clade.

Combined, they yield a robustly supported phylogeny with most

nodes having >0.95 posterior probability (Figure 2) (Huelsenbeck

& Rannala, 2004). The phylogeny supports a fundamental separa-

tion between New and Old World clades, as well as the nesting

of Caribbean clades within a continental grade. Within the Carib-

bean clade, we find a number of deep divergences as well as evi-

dence for higher diversity in the region than previously explained

by morphology alone. The biogeographic analyses indicate vicari-

ance in addition to several implied LDD events.

3.2 | GAARlandia vicariance

Within the New World clade, we tested whether GAARlandia vicari-

ance or LDD overwater hypotheses could explain the colonization of

the Caribbean. Results suggest that the Greater Antilles were colo-

nized once, from South America (Figures 2–5) and that the timing of

the event is consistent with the GAARlandia land bridge. Accord-

ingly, results from AIC model comparison supported GAARlandia,

both DEC and DEC+J were better fitting models than both No

GAARlandia DEC and DEC+J models (Table 1). Furthermore, genetic

structure within the Caribbean reflects patterns consistent with our

current understanding of historical island connectivity (Iturralde‐
Vinent, 2006). The Western Hispaniola clade is sister to the rest of

the Greater Antilles and North America. A second clade consists of

individuals from Eastern Hispaniola, Southern Hispaniola (Rabo de

Gato), and Puerto Rico (Figure 2). At a finer scale, the phylogenetic

structure within the Greater Antilles clade also matches the within‐
island geologic history (Figures 2 and 4). Our sampling captures deep

and diverse genetic histories (divergence times 20–5 Ma) within His-

paniola and Cuba. Neither island is monophyletic, but both include

apparently old lineages that are separated by mountain ranges (Fig-

ures 2 and 4). The two Cuba species coincide with the isolated

mountain ranges of Turquino and Cubitas, and two Hispaniola spe-

cies are separated by the Cordillera Central (Mann, Draper, & Lewis,

1991) (Figures 2 and 3). While the Puerto Rico lineage is mono-

phyletic, it has two strongly supported clades containing northern

and southern individuals on either side of the Cordillera Central

mountain range.

3.3 | Overwater dispersal

Several overwater dispersal events are proposed including relatively

recent (<10 Ma) and short‐distance colonizations of (a) North Amer-

ica from Cuba, (b) the Lesser Antilles from South America, and (c)

between Lesser Antilles islands (Guadeloupe, Dominica and St. Vin-

cent) (Figure 5). Our molecular dating analyses indicate overwater

dispersal to the Lesser Antilles after 32 Ma (Figure 3), consistent

with the uplift of the volcanic and sedimentary Lesser Antilles Mid-

dle Eocene in the north (Guadeloupe and Dominica) and Oligocene

in the south (St. Vincent) (Pindell, 1994; Pindell & Barrett, 1990).

Overwater dispersal may also be indicated in the Old World, but the

data are sparse at this point.
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3.4 | Gondwanan origin

All analyses split the Deinopidae into two major clades, a predomi-

nantly Old World one containing species from Africa, Madagascar,

Asia, and Australia (including the Old World tropical genus Menneus),

and an exclusively New World group containing Deinopis from the

Caribbean, and North, Central, and South America. AHE analyses,

place a single individual from Mexico (individual not sampled in San-

ger sequencing) nested within the Old World clade (Figure 3), see

Discussion for details. This specimen possesses abdominal humps—a

trait that characterizes part of the Old World clade. Thus, its mor-

phology is consistent with its unexpected placement as sister to spec-

imens from South Africa. Our AHE BEAST analysis dates the

divergence between Old and New World Deinopidae at 113.84 Ma

(130.09–98.80 95% highest posterior density [HPD]), timing that is

consistent among “chimeric” and individual gene BEAST analyses (Fig-

ure 3 and Fig. S2.3). This split coincides with the timing of a conti-

nental break up that isolated eastern South America from western

Africa during the Early Cretaceous period (119–105 Ma) (Ali & Aitchi-

son, 2008; Hawkesworth et al., 1999; McLoughlin, 2001; Vidal et al.,

2008, 2010). Furthermore, a global biogeographic analysis estimates

the most recent common ancestor of Old and New World clades pos-

sessed an ancestral range within Africa and South America (Figure 5).

4 | DISCUSSION

Our study used a combination of AHE and Sanger sequencing data

paired with taxon sampling focusing on the Caribbean and the New

World to reveal the biogeography and evolutionary history of the

poorly known ogre‐faced spiders. The biogeographic data suggest

that Deinopis colonized the Greater Antilles once (Figures 4 and 5).

The split between South America and Caribbean lineages occurred

prior to the existence of GAARlandia, while the first split within the

Caribbean occurs a few million years after its submergence. Colo-

nizations within the Greater Antilles occurred sometime in the

interim and biogeographic analyses support a role of the postulated

GAARlandia land bridge in this colonization (Table 1), as well as

inter‐island connectedness until 15 Ma when Cuba separated from

Hispaniola (Iturralde‐Vinent, 2006).
GAARlandia‐mediated dispersal from South America to the Carib-

bean has been subject to critique and debate (Ali, 2012; Hedges,

1996, 2006). Our study adds to the growing number of lineages

where the postulated land bridge is expected to have aided dispersal

into the Greater Antilles, including other spiders (Binford et al.,

2008; Crews & Gillespie, 2010; McHugh et al., 2014), frogs (Alonso

et al., 2012), and freshwater fish (Říčan et al., 2013; Weaver et al.,

2016). Many studies that exclusively compare clade age to the age

of GAARlandia also support alternative hypotheses of earlier disper-

sals to the proto‐Antilles islands, where land may have existed 5–
10 Ma prior (Iturralde‐Vinent, 2006), or more recent overwater dis-

persal events. Here, however, we find support for GAARlandia‐
mediated dispersal through likelihood‐ratio hypothesis testing.

High levels of endemism among and within islands suggest, fol-

lowing a single colonization, Deinopis subsequently diversified in

response to the separation of islands, and geological barriers (moun-

tain ranges) within islands. Indeed, the biogeographic analyses reflect

the many nuances of the complex geological history of the Carib-

bean including the interconnectedness of the Greater Antilles. For

example, the sister relationship between eastern Hispaniola including

Puerto Rico is consistent with the hypothesis that these regions had

a relatively recent land connection until the opening of the Mona

Passage (30–22 Ma) (Iturralde‐Vinent, 2006). Furthermore, within

multiple islands, we find genetically unique clades that are separated

by barriers such as mountain ranges (Figure 3). Similar patterns of

high interspecific genetic divergence have been found in dispersal‐
limited lineages of spiders, including Mesothelae (Liphistiidae) spiders

as well as mygalomorphs (Hamilton, Formanowicz, & Bond, 2011;

Hamilton, Hendrixson, Brewer, & Bond, 2014; Xu, Liu, Chen, Li, &

Kuntner, 2015; Xu, Liu, Chen, Ono, et al., 2015; Xu, Liu, Cheng, et

al., 2015; Xu et al., 2016). These finding provides an additional con-

text in which to explore the origin and age of Caribbean taxa,

including the potential impact of geology on phylogeny.

Within the Caribbean, we find evidence for multiple overwater

dispersal events including a “reverse colonization” from island to

continent—the colonization of North America via northern Cuba

(northern GAARlandia). The same pattern is found, e.g., in the Lox-

osceles and Sicarius spiders (Binford et al., 2008). Reverse coloniza-

tion has also been documented in various biotas on a global scale,

including the Anolis carolinesis lizard from Cuba to North America

(Bellemain & Ricklefs, 2008; Glor et al., 2005). The classic biogeo-

graphic view indicates that islands mainly serve as sinks for conti-

nental taxa (Agnarsson & Kuntner, 2012; Bellemain, Bermingham, &

Ricklefs, 2008; Sturge, Jacobsen, Rosensteel, Neale, & Omland,

TABLE 1 ‘BioGeoBEARS’ relative model probabilities. Two models, Dispersal‐extinction‐cladogenesis (DEC) and (DEC+J), the (+J) allowing
for founder event speciation were used to test dispersal data with and without GAARlandia. (LnL) log‐likelihood; (d) rate of dispersal; (e) rate of
extinction; (j) relative probability of founder event speciation at cladogenesis; (AIC) Akaike's information criterion; (ΔAIC) AIC‐min(AIC); (AIC
weight) normalized relative model likelihood; (relative LL) model relative likelihood.

Model LnL Number of parameters d e j AICc ΔAIC AICc_wt Relative LL

DEC GAARlandia −17.07 2 0.7878 0.0156 0 40.15 0 0.7653 1

DEC+J GAARlandia −16.12 3 1.2016 0.0195 0.4598 43.02 2.87 0.1824 0.2384

DEC No GAARlandia −20.48 2 0.1609 0.0266 0 46.97 6.82 0.0253 0.0331

DEC+J No GAARlandia −18.02 3 0.7250 0.0292 0.3755 46.84 6.69 0.0269 0.0352
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2009); however, these dispersal probabilities are dependent on the

interplay between the size and distance of the island to the mainland

as well as the dispersal ability of the taxa. We also find evidence of

relatively short‐distance overwater dispersal to and between the Les-

ser Antilles, logically as these are volcanic and sedimentary islands

never connected to the mainland. Interestingly, this overwater
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dispersal occurred soon after the emergence of these islands, sug-

gesting that perhaps conditions during the emergence of these

islands were favourable to dispersal.

4.1 | Global implications

In sum, we find correspondences between phylogeny and geologic

events spanning over 100 Myr. Few studies to date have placed Car-

ibbean biogeography in a global context (Gamble, Bauer, Greenbaum,

& Jackman, 2008; Longrich, Vinther, Pyron, Pisani, & Gauthier, 2015;

Pramuk, Robertson, Sites, & Noonan, 2008; Pyron, 2014), conse-

quently limiting ancestral ranges of West Indies biota to the Americas.

Trade winds can bring flora and fauna from Africa to the Neotropics

through trans‐Atlantic sweepstakes dispersal (Heinicke et al., 2007;

Raxworthy, Forstner, & Nussbaum, 2002; Vidal et al., 2008; Voelker,

Rohwer, Outlaw, & Bowie, 2009). Results from the dated phylogeny

(Figure 3) are consistent with the argument that Deinopis was present

on Gondwana before diverging into Old World and New World clades

following the breakup of the supercontinent. There have been similar

findings with other ancient spiders such as sicariids (Binford et al.,

2008) and archaeids (Wood, Matzke, Gillespie, & Griswold, 2013). Still,

it is clear Deinopis spiders have diversified through both vicariance and

LDD events. Our analyses reveal several intriguing examples of over-

water dispersal events, both ancient and recent, and short and long

distance. The global dataset, though limited, suggests possible disper-

sal to Madagascar, and Australia, from Africa. The colonization of

Madagascar is dated at 80–60 Ma, significantly after the separation of

Madagascar from Africa (Figures 3 and 5). Overwater dispersal from

Africa is a hypothesis supported by the majority of Malagasy lineages

studied to date (Agnarsson & Kuntner, 2005). Furthermore, while the
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Australia clade is grouped with the rest of the Old World, historically

the continent was connected to South America through Antarctica

around 60–50 Ma (Sanmartín & Ronquist, 2004), almost 100 Ma after

separating from India and Africa (Hawkesworth et al., 1999; McLough-

lin, 2001). Thus LDD from South Africa or a possible ancient land

bridge connecting Eurasia to Australia must be invoked to explain the

nesting of Australian specimens within the clade from Africa instead

of purely Gondwanan vicariance. More extensive global sampling is

necessary to address these biogeographic questions. Unexpectedly,

we find the placement of one of the two Mexico specimens within an

otherwise purely Old World clade (Figures 3 and 5). While surprising,

the shared traits otherwise restricted to Old World species (i.e.,

abdominal hump morphology) independently support this finding. Bar-

ring further evidence, relatively recent LDD must thus be invoked to

explain the presence of D. diabolica (Kraus, 1956), which shares these

Old World morphological features, in the Americas. Further testing

from a much more broad global taxonomic sampling effort is required

to resolve these evolutionary relationships.

4.2 | Mitochondrial DNA phylogeography

Notably, the single‐locus mtDNA COI analysis corresponds closely to

geography and alone supported the GAARlandia hypothesis

(Fig. S2.5). Single‐marker analyses are prone to insufficient resolution

and/or large error, often due to deep mitochondrial divergences or

introgression events that obscure the true evolutionary past (Cape-

sius & Bopp, 1997; Gontcharov, Marin, & Melkonian, 2004; Hoef‐
Emden, Marin, & Melkonian, 2002; Nei, Kumar, & Takahashi, 1998;

Nickrent, Parkinson, Palmer, & Duff, 2000; Poe & Swofford, 1999).

In this case, COI appears to capture the major events in the history

of this ancient lineage. Generally, the individual nuclear Sanger data

correspond to geology to a much lesser degree. This may reflect the

lower substitution rates of nuclear data, thus less informative charac-

ters. Additionally, it could also indicate population dynamics such as

male biased dispersal that would lead to different evolutionary histo-

ries between the maternal and paternal genetic lines (Aars & Ims,

2000; Doums, Cabrera, & Peeters, 2008; Knight et al., 1999; Pusey,
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1987). The results from the AHE data (Hamilton et al., 2016), consis-

tent with the COI results, indicate the former: that single‐locus
nuclear marker (standard Sanger sequencing data) may be positively

misleading due to limited variation, and possibly other processes.

These results are consistent with the long‐celebrated success of

mitochondrial data in phylogeography (Avise, 2000).

4.3 | Secondary loss of highly derived eyes?

Another surprising result that this study has uncovered is the non‐
monophyly of Deinopis. Menneus is nested within the genus (contra

[Coddington et al., 2012]), which ignites intriguing morphological,

evolutionary, and biogeographic questions. Did Menneus disperse

overwater or vicariantly through Eurasia from Africa to Australia and

then go extinct elsewhere, or did the morphology (secondarily

reduced eye size and abdominal humps) evolve separately on both

continents? Future studies may address the intriguing hypothesis

that in Menneus the size of the uniquely large posterior median eyes

(characteristic of Deinopis) has been secondarily reduced. Yet, with a

very small sample of Menneus in this dataset, further taxon sampling

is necessary to untangle the phylogenetic and biogeographic rela-

tionships within Old World Deinopidae. With a family level
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molecular phylogenetic revision, future studies can assess whether

Menneus is monophyletic and begin to untangle the unexpected and

complex evolutionary history within this lineage of spiders. Our

study suggests there are future venues for investigating the evolu-

tion of eye size and function in this fascinating group.

5 | CONCLUSION

Ogre‐faced spiders represent a global lineage that champions the

fundamental importance of both vicariance and dispersal. This lin-

eage surfaces as an excellent biogeographic tool that despite its rar-

ity, offers great promise for further, more detailed global studies.

Multiple LDD events within this group reveal potential good disper-

sal abilities. Future studies can test dispersal ability and other factors

such as priority related effects possibly underlying these colonization

patterns. Furthermore, the origin, and putative secondary loss, of a

highly unique visual system, suggests promising venues for research

outside the realm of biogeography.
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