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Abstract The biogenetic law posits that the ontogeny of an
organism recapitulates the pattern of evolutionary changes.
Morphological evidence has offered some support for, but
also considerable evidence against, the hypothesis.
However, biogenetic law in behavior remains underex-
plored. As physical manifestation of behavior, spider webs
offer an interesting model for the study of ontogenetic
behavioral changes. In orb-weaving spiders, web symmetry
often gets distorted through ontogeny, and these changes
have been interpreted to reflect the biogenetic law. Here, we
test the biogenetic law hypothesis against the alternative, the
optimal foraging hypothesis, by studying the allometry in
Leucauge venusta orb webs. These webs range in inclina-
tion from vertical through tilted to horizontal; biogenetic
law predicts that allometry relates to ontogenetic stage,

whereas optimal foraging predicts that allometry relates to
gravity. Specifically, pronounced asymmetry should only be
seen in vertical webs under optimal foraging theory. We
show that, through ontogeny, vertical webs in L. venusta
become more asymmetrical in contrast to tilted and horizon-
tal webs. Biogenetic law thus cannot explain L. venusta web
allometry, but our results instead support optimization of
foraging area in response to spider size.

Keywords Recapitulation theory . Ontogeny . Ontogenetic
change . Asymmetry . Optimal foraging . Leucauge venusta

Introduction

The biogenetic law, i.e. “ontogeny recapitulates phylogeny”
as formulated by Haeckel in 1872 (Olsson et al. 2010),
predicts that the ontogeny of an organism follows the pattern
of preceding evolutionary changes in its lineage and was
extensively debated throughout the past century (Nelson
1978; Olsson et al. 2010). Although morphological evi-
dence refutes the biogenetic law as a truly general biological
concept, several studies have observed some degree of par-
allelism between ontogeny and phylogeny (Gould 1992;
Richardson and Keuck 2002). However, the ontogenetic
changes in animal behavior are underexplored in this con-
text, but have recently been suggested to potentially reca-
pitulate phylogeny (Richardson and Keuck 2002; Eberhard
et al. 2008; Nakata 2010).

Spider webs are a particularly convenient system to study
ontogenetic changes in behavior. They represent a physical
record of spiders' behaviors through all ontogenetic stages,
enabling a measurement of the behavioral development
through ontogeny (Benjamin and Zschokke 2004; Venner
and Casas 2005; Vollrath and Selden 2007), and are further-
more easily quantified (Blackledge 2011). The architecture
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of spider webs changes through ontogeny in most of the
families studied so far (Eberhard et al. 2008). The classical
vertical wagon-wheel-shaped webs, or “orb webs,” usually
retain their general architecture through ontogeny. However,
larger spiders build larger webs that tend to be more asym-
metrical (Herberstein and Heiling 1999). Early instar orb-
weaving spiders typically build symmetrical, circular orb
webs with the web hub located close to the geometrical
center, while adults mostly build vertically elongated webs
with vertically displaced hubs (Eberhard 1990; Zschokke
and Vollrath 1995). As the ancestral orb web was suppos-
edly symmetric (Eberhard 1985; Eberhard et al. 2008;
Hesselberg 2010), some studies consider such changes in
web ontogeny to reflect the biogenetic law, summarizing
data from 11 genera and 5 orb-weaving families (Eberhard
et al. 2008; Hesselberg 2010). However, other studies have
questioned such a general rule suggesting that other factors
might affect web asymmetry (e.g., Heiling and Herberstein
1999; Kuntner et al. 2010a; Nakata 2010; Nakata and
Zschokke 2010; Zschokke and Nakata 2010).

Nakata (2010) was the first to contrast the biogenetic law
with the alternative hypothesis, which predicts that orb-
weaving spiders as central place foragers maximize their
prey catching by altering the symmetry of their webs as they
grow. This hypothesis predicts that spiders displace the hubs

of their webs somewhat above the webs' geometric center
because of the difference in their upward and downward
running speeds (Masters and Moffat 1983; ap Rhisiart and
Vollrath 1994). Due to gravity effects, running speed in
different directions is logically affected by spider mass,
and several studies show that spider size and mass correlate
positively with hub displacement and/or web asymmetry
(e.g., Herberstein and Heiling 1999; Bleher 2000; Kuntner
et al. 2008, 2010a, b). Additionally, spiders typically face
downwards while sitting at the hub, thus combining the
effect of gravity and orientation to optimize prey catching
(ap Rhisiart and Vollrath 1994; Zschokke and Nakata 2010).

We test these two alternative hypotheses by studying onto-
genetic shifts in orb web allometry in the tetragnathid spider
Leucauge venusta. This species builds orb webs that range
from vertical to horizontal in inclination throughout all onto-
genetic stages and is thus ideal to investigate the effect of the
optimal foraging area versus the biogenetic law on spider orb
web allometry. The optimal foraging hypothesis predicts that
gravity does not have an impact on the symmetry of horizontal
orb webs (ap Rhisiart and Vollrath 1994; Herberstein and
Heiling 1999), but should affect the symmetry of vertical
orb webs, shifting it towards asymmetry. On the other hand,
the biogenetic law predicts that all webs should display a more
or less equal web allometry, related to ontogeny (Eberhard et

Fig. 1 Web of L. venusta
illustrating investigated
parameters: a web width, b web
height, c hub-to-top distance
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al. 2008). A similar hypothesis predicts that experienced web-
building spiders learn to build more efficient webs (Heiling
and Herberstein 1999).

Methods

Contrary to most previous studies (e.g., Masters and Moffat
1983; ap Rhisiart and Vollrath 1994; Herberstein and
Heiling 1999; Bleher 2000; Kuntner et al. 2008; Kuntner
and Agnarsson 2009), we investigate instars through the
entire ontogenetic range and also explore the effect of spider
mass because it additionally affects vertical web asymmetry
(Kuntner et al. 2010a). We used spider linear size and live
mass to quantify ontogeny because they highly correlate
with estimated ontogenetic stages, but explain ontogeny
better (Kuntner et al. 2010a). As webs in captivity architec-
turally differ from webs in nature (Sensenig et al. 2010), we
measured all webs in their natural setting.

We measured 98 webs of L. venusta on 28 October 2011
at El Verde, El Yunque State Forest, Luquillo (N18.32301,
W65.81985) and on 20 November 2011 at Cambelache
State Forest, Barceloneta (N18.45226, W66.59711), Puerto
Rico. Webs were chosen haphazardly.

In the field, we dusted the webs with cornstarch to
increase visual contrast and measured the following param-
eters (Fig. 1): a = web width (in centimeter), b = web height
(in centimeter), c = top-to-hub distance (in centimeter), and
inclination in arc degrees (0° to 90° with the extremes
representing a perfectly horizontal and vertical web, respec-
tively). In the laboratory, we weighed all spiders to the
nearest 0.01 mg and measured the width of the carapace as
a measure of spider linear size.

We calculated the two web asymmetry measures: first,
hub displacement used as in Kuntner et al. (2008) and
similar to the hub asymmetry index (Blackledge et al.
2011), defined with the formula HD ¼ b�c

b ; and second,
the ladder index used as in Peters (1937) and Kuntner et al.
(2008) and similar to the web asymmetry index (Blackledge
et al. 2011) as a measure of web shape, delimited with the
outermost sticky spiral and defined with the formula LI ¼ b

a .
We preferred hub displacement and ladder index to hub
asymmetry and web asymmetry, respectively, because hub
displacement and ladder index are linear and more readily
visualized.

We grouped our web data into three inclination groups,
horizontal (0–30°, N=39), tilted (31–60°, N=33), and vertical
webs (61–90°, N=26). We tested all data for normality using
the Kolmogorov–Smirnov test. Since only the data for cara-
pace width were normally distributed, we log-transformed all
other data. We then used Pearson's correlation to test if spider
length and mass correlate with hub displacement and ladder
index, and the analysis of variance to test if ladder index
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Fig. 2 Correlations between spider length and hub displacement (gray
circles), and spider mass and hub displacement (black circles), in three
inclination groups of L. venusta webs: the horizontal (a), tilted (b) and
vertical (c) webs. The black and gray p values reflect the black and
gray circles, respectively
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differs between inclination groups. We performed all statisti-
cal tests in PASW 18 (Field 2005).

Results and discussion

Web inclination had a clear effect on web allometry (Fig. 2).
In horizontal and tilted webs, hub displacement did not
correlate with spider length and mass (Table 1, Fig. 2a and
b). In vertical webs, however, hub displacement significant-
ly correlated with spider length and mass (Table 1, Fig. 2c).
The ladder index as a measure of web shape did not corre-
late with spider size (Table 1), nor did it differ between the
three inclination groups (F99,2=1.343, p=0.266).

The biogenetic law has been rejected in numerous studies
(Gould 1992; Theissen and Saedler 1995; Richardson et al.
1997; Richardson and Keuck 2002), but there is some evi-
dence for it in others, e.g., in bivalve muscles (Miyazaki and
Mickevich 1982), paper wasps (Wenzel 1993), and among
spiders, the webs of the family Theridiidae (Eberhard et al.
2008; Barrantes and Eberhard 2010). The present study inves-
tigates the ontogenetic changes in web architecture in the orb-
weaving spider L. venusta. Our results show an increase in
hub displacement through ontogeny in vertical webs, but not
in horizontal or tilted webs, while web shape remains circular
throughout the ontogeny of all spiders. Such ontogenetic
change in orb web architecture is predicted by the optimal
foraging hypothesis, but not by the biogenetic law.

That hubs become more displaced in vertical webs of
larger spiders, but not in horizontal webs, indicates that web
symmetry changes due to optimization of the spiders' for-
aging area, most likely because of the spiders' difference in
upward and downward running speed (Herberstein and
Heiling 1999; Kuntner et al. 2010a). That webs remain
circular throughout ontogeny further indicates that increased
differences in running speed affect web symmetry, as that

difference can only explain the increased hub displacement.
Changes in web shape are usually a result of limited web
space (Kuntner et al. 2010b; Harmer and Herberstein 2009)
or prey adaptation (Eberhard 1975). As L. venusta build
webs in unlimited aerial space, and because circular webs
are better prey-catching devices than asymmetrically shaped
webs (Harmer et al. 2012), web shape was not expected to
change through ontogeny. While spiders also change web
architecture in relation to prey and habitat (Herberstein and
Tso 2011), our results are likely not affected by such factors
as the webs we measured were located within a small area.

Orb webs are spiders' extended phenotypes employed in all
ontogenetic stages and thus directly influence their fitness
(Eberhard 1990; Herberstein and Tso 2011). Web architecture
that maximizes foraging success throughout the spiders' lives
is likely to be selected for. This is supported by other studies,
e.g., different species of Cyclosa enlarge different parts of
their webs in relation to which side the spiders are facing
(Nakata and Zschokke 2010), Telaprocera spiders build high-
ly vertically elongated webs when in horizontally limited
space and the more efficient circular webs when in unlimited
space (Harmer and Herberstein 2009), and heavier individuals
of several species build more asymmetrical webs (Herberstein
and Heiling 1999; Kuntner et al. 2010a). Additionally, expe-
rienced spiders also learn which parts of the web are most
successful in catching prey (Heiling and Herberstein 1999).
Furthermore, Coslovsky and Zschokke (2009) investigated
the building costs in different parts of an orb web. Contrary
to predictions, they found that building of the lower half of the
web is costlier than the building of the upper half. Enlarging
the lower half of the web by displacing the hub upwards thus
indicates that an optimal foraging area is under even stronger
selection pressure with building cost as an opposing force.

Although web allometry in L. venusta cannot be explained
by invoking the biogenetic law, the ultimate test of whether
ontogeny recapitulates the evolutionary steps of Leucauge

Table 1 Paerson's correlations
of spider length/mass and two
asymmetry indices (hub dis-
placement, ladder index) in three
inclination groups of L. venusta
webs

Correlation P r N

Spider length and hub displacement (horizontal webs) 0.551 0.098 39

Spider mass and hub displacement (horizontal webs) 0.526 0.105 39

Spider length and ladder index (horizontal webs) 0.674 −0.07 39

Spider mass and ladder index (horizontal webs) 0.557 −0.097 39

Spider length and hub displacement (tilted webs) 0.189 0.235 33

Spider mass and hub displacement (tilted webs) 0.147 0.258 33

Spider length and ladder index (tilted webs) 0.942 −0.013 33

Spider mass and ladder index (tilted webs) 0.953 −0.011 33

Spider length and hub displacement (vertical webs) 0.003 0.564 26

Spider mass and hub displacement (vertical webs) 0.007 0.516 26

Spider length and ladder index (vertical webs) 0.933 0.017 26

Spider mass and ladder index (vertical webs) 0.788 −0.055 26

266 Naturwissenschaften (2013) 100:263–268

Author's personal copy



spiders would have to include phylogenetic data. Currently,
however, a Leucauge phylogeny is not available, and thus, the
evolution of Leucauge webs is unknown. Additionally, some
authors argue that the ancestral orb web was probably sym-
metric and circular (Eberhard et al. 2008; Hesselberg 2010),
but until solid evidence exists for such assumption, the ances-
tral orb web remains of limited use in tests of the biogenetic
law. Furthermore, since the spider group Orbiculariae com-
prises approximately 12,000 species (Coddington 1986;
Griswold et al. 1998; Garb et al. 2006; Blackledge et al.
2009), a reconstructed ancestral web architecture of such a
diverse group would provide only a limited power in the
context of testing the biogenetic law. Evolutionary tests thus
will require ancestral reconstruction of the orb web at the nodes
under study, rather than the common ancestor of Orbiculariae.

In conclusion, the ontogeny of L. venusta webs does not
reflect the biogenetic law but is consistent with the foraging
optimization. The extent to which our findings in L. venusta
can be generalized to other orb web spiders is difficult to
estimate. However, because the web is primarily a foraging
structure, we predict that future studies of ontogenetic changes
in orb webs will support foraging optimization, especially
when considering phylogenetic patterns of investigated spider
groups. Ontogenetic changes in non-foraging behavior and
what factors influence them require further study and are also
likely influenced by many factors under selection.
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